Stability of dendritic spines and synaptic contacts is controlled by αN-catenin
Abe K, Chisaka O, Van Roy F and Takeichi M
Nat Neurosci 7(4):357-63 (2004)
SUMMARY
Morphological plasticity of dendritic spines and synapses is thought to be crucial for their physiological functions. Here we show that αN-catenin, a linker between cadherin adhesion receptors and the actin cytoskeleton, is essential for stabilizing dendritic spines in rodent hippocampal neurons in culture. In the absence of αN-catenin, spine heads were abnormally motile, actively protruding filopodia from their synaptic contact sites. Conversely, αN-catenin overexpression in dendrites reduced spine turnover, causing an increase in spine and synapse density. Tetrodotoxin (TTX), a neural activity blocker, suppressed the synaptic accumulation of αN-catenin, whereas bicuculline, a GABA antagonist, promoted it. Furthermore, excess αN-catenin rendered spines resistant to the TTX treatment. These results suggest that αN-catenin is a key regulator for the stability of synaptic contacts.
LINK
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=15034585